2023-09-14
This document gives an explanation of how the token price is calculated.
Counting tokens for chat completions API call.
We take as an example the language model GPT-3.5 Turbo.
Model | Input | Output |
---|---|---|
4K context | $0.0015 / 1K tokens | $0.002 / 1K tokens |
16K context | $0.003 / 1K tokens | $0.004 / 1K tokens |
To see how many tokens are in a text string without making an API call, you can use OpenAI’s tiktoken Python library. Source: https://help.openai.com/en/articles/7232945-how-can-i-use-the-chatgpt-api
When using the ChatGPT API, the cost is determined by two main factors: the number of tokens in the input and the number of tokens in the output. Each token has a specific price based on the model you're using.
Here's the Python request we made to the ChatGPT API:
import openai
completion = openai.ChatCompletion.create(
model="gpt-3.5-turbo",
messages=[
{"role": "system", "content": "You are a helpful assistant."},
]
)
{
"id": "...",
"object": "chat.completion",
"created": 1694725384,
"model": "gpt-3.5-turbo-0613",
"choices": [
{
"index": 0,
"message": {
"role": "assistant",
"content": "How can I assist you today?"
},
"finish_reason": "stop"
}
],
"usage": {
"prompt_tokens": 13,
"completion_tokens": 7,
"total_tokens": 20
}
}
From the response, we can see that:
Input tokens used: 13 Output tokens generated: 7 Total tokens: 20 Breaking down the cost:
So, for our example call with a total of 20 tokens, the cost would be $0.0000335.
Models don't see text like you and I, instead they see a sequence of numbers (known as tokens).
ChatGPT models like gpt-3.5-turbo and gpt-4 use tokens in the same way as older completions models, but because of their message-based formatting, it's more difficult to count how many tokens will be used by a conversation.
# tiktoken is a fast BPE tokeniser for use with OpenAI's models.
import tiktoken
# load correct encoding: <Encoding 'cl100k_base'>
encoding = tiktoken.encoding_for_model("gpt-3.5-turbo-0613")
print(encoding)
# output: <Encoding 'cl100k_base'>
messages = [
{"role": "system", "content": "You are a helpful assistant."}
]
encoded = encoding.encode(messages[0]['content'])
print(encoded)
# output: [2675, 527, 264, 11190, 18328, 13]
# result is 6 tokens
def num_tokens_from_messages(messages, model="gpt-3.5-turbo-0613"):
"""Return the number of tokens used by a list of messages."""
try:
encoding = tiktoken.encoding_for_model(model)
except KeyError:
print("Warning: model not found. Using cl100k_base encoding.")
encoding = tiktoken.get_encoding("cl100k_base")
if model in {
"gpt-3.5-turbo-0613",
"gpt-3.5-turbo-16k-0613",
"gpt-4-0314",
"gpt-4-32k-0314",
"gpt-4-0613",
"gpt-4-32k-0613",
}:
tokens_per_message = 3
tokens_per_name = 1
elif model == "gpt-3.5-turbo-0301":
tokens_per_message = 4 # every message follows <|start|>{role/name}\n{content}<|end|>\n
tokens_per_name = -1 # if there's a name, the role is omitted
elif "gpt-3.5-turbo" in model:
print("Warning: gpt-3.5-turbo may update over time. Returning num tokens assuming gpt-3.5-turbo-0613.")
return num_tokens_from_messages(messages, model="gpt-3.5-turbo-0613")
elif "gpt-4" in model:
print("Warning: gpt-4 may update over time. Returning num tokens assuming gpt-4-0613.")
return num_tokens_from_messages(messages, model="gpt-4-0613")
else:
raise NotImplementedError(
f"""num_tokens_from_messages() is not implemented for model {model}. See https://github.com/openai/openai-python/blob/main/chatml.md for information on how messages are converted to tokens."""
)
num_tokens = 0
for message in messages:
num_tokens += tokens_per_message
for key, value in message.items():
num_tokens += len(encoding.encode(value))
if key == "name":
num_tokens += tokens_per_name
num_tokens += 3 # every reply is primed with <|start|>assistant<|message|>
return num_tokens
num_tokens = num_tokens_from_messages(messages, model="gpt-3.5-turbo-0613")
print(num_tokens)
# output: 13